142 research outputs found

    Flux imbalance analysis and the sensitivity of cellular growth to changes in metabolite pools

    Get PDF
    Stoichiometric models of metabolism, such as flux balance analysis (FBA), are classically applied to predicting steady state rates - or fluxes - of metabolic reactions in genome-scale metabolic networks. Here we revisit the central assumption of FBA, i.e. that intracellular metabolites are at steady state, and show that deviations from flux balance (i.e. flux imbalances) are informative of some features of in vivo metabolite concentrations. Mathematically, the sensitivity of FBA to these flux imbalances is captured by a native feature of linear optimization, the dual problem, and its corresponding variables, known as shadow prices. First, using recently published data on chemostat growth of Saccharomyces cerevisae under different nutrient limitations, we show that shadow prices anticorrelate with experimentally measured degrees of growth limitation of intracellular metabolites. We next hypothesize that metabolites which are limiting for growth (and thus have very negative shadow price) cannot vary dramatically in an uncontrolled way, and must respond rapidly to perturbations. Using a collection of published datasets monitoring the time-dependent metabolomic response of Escherichia coli to carbon and nitrogen perturbations, we test this hypothesis and find that metabolites with negative shadow price indeed show lower temporal variation following a perturbation than metabolites with zero shadow price. Finally, we illustrate the broader applicability of flux imbalance analysis to other constraint-based methods. In particular, we explore the biological significance of shadow prices in a constraint-based method for integrating gene expression data with a stoichiometric model. In this case, shadow prices point to metabolites that should rise or drop in concentration in order to increase consistency between flux predictions and gene expression data. In general, these results suggest that the sensitivity of metabolic optima to violations of the steady state constraints carries biologically significant information on the processes that control intracellular metabolites in the cell.Published versio

    The Quasi-Steady State Assumption in an Enzymatically Open System

    Full text link
    The quasi-steady state assumption (QSSA) forms the basis for rigorous mathematical justification of the Michaelis-Menten formalism commonly used in modeling a broad range of intracellular phenomena. A critical supposition of QSSA-based analyses is that the underlying biochemical reaction is enzymatically "closed," so that free enzyme is neither added to nor removed from the reaction over the relevant time period. Yet there are multiple circumstances in living cells under which this assumption may not hold, e.g. during translation of genetic elements or metabolic regulatory events. Here we consider a modified version of the most basic enzyme-catalyzed reaction which incorporates enzyme input and removal. We extend the QSSA to this enzymatically "open" system, computing inner approximations to its dynamics, and we compare the behavior of the full open system, our approximations, and the closed system under broad range of kinetic parameters. We also derive conditions under which our new approximations are provably valid; numerical simulations demonstrate that our approximations remain quite accurate even when these conditions are not satisfied. Finally, we investigate the possibility of damped oscillatory behavior in the enzymatically open reaction.Comment: 28 pages, 12 figure

    Mapping the landscape of metabolic goals of a cell

    Get PDF
    Genome-scale flux balance models of metabolism provide testable predictions of all metabolic rates in an organism, by assuming that the cell is optimizing a metabolic goal known as the objective function. We introduce an efficient inverse flux balance analysis (invFBA) approach, based on linear programming duality, to characterize the space of possible objective functions compatible with measured fluxes. After testing our algorithm on simulated E. coli data and time-dependent S. oneidensis fluxes inferred from gene expression, we apply our inverse approach to flux measurements in long-term evolved E. coli strains, revealing objective functions that provide insight into metabolic adaptation trajectories.MURI W911NF-12-1-0390 - Army Research Office (US); MURI W911NF-12-1-0390 - Army Research Office (US); 5R01GM089978-02 - National Institutes of Health (US); IIS-1237022 - National Science Foundation (US); DE-SC0012627 - U.S. Department of Energy; HR0011-15-C-0091 - Defense Sciences Office, DARPA; National Institutes of Health; R01GM103502; 5R01DE024468; 1457695 - National Science Foundatio

    The Dynamics of Hybrid Metabolic-Genetic Oscillators

    Full text link
    The synthetic construction of intracellular circuits is frequently hindered by a poor knowledge of appropriate kinetics and precise rate parameters. Here, we use generalized modeling (GM) to study the dynamical behavior of topological models of a family of hybrid metabolic-genetic circuits known as "metabolators." Under mild assumptions on the kinetics, we use GM to analytically prove that all explicit kinetic models which are topologically analogous to one such circuit, the "core metabolator," cannot undergo Hopf bifurcations. Then, we examine more detailed models of the metabolator. Inspired by the experimental observation of a Hopf bifurcation in a synthetically constructed circuit related to the core metabolator, we apply GM to identify the critical components of the synthetically constructed metabolator which must be reintroduced in order to recover the Hopf bifurcation. Next, we study the dynamics of a re-wired version of the core metabolator, dubbed the "reverse" metabolator, and show that it exhibits a substantially richer set of dynamical behaviors, including both local and global oscillations. Prompted by the observation of relaxation oscillations in the reverse metabolator, we study the role that a separation of genetic and metabolic time scales may play in its dynamics, and find that widely separated time scales promote stability in the circuit. Our results illustrate a generic pipeline for vetting the potential success of a potential circuit design, simply by studying the dynamics of the corresponding generalized model

    Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity

    Get PDF
    Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurements and the SMRN to make inferences on the sensitivity of enzymes to their regulators. Generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.P30 CA008748 - NCI NIH HHS; R01 GM121950 - NIGMS NIH HH

    Mitochondrial DNA copy number variation across human cancers.

    Get PDF
    Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities
    corecore